cito - Building and Training Neural Networks
The 'cito' package provides a user-friendly interface for training and interpreting deep neural networks (DNN). 'cito' simplifies the fitting of DNNs by supporting the familiar formula syntax, hyperparameter tuning under cross-validation, and helps to detect and handle convergence problems. DNNs can be trained on CPU, GPU and MacOS GPUs. In addition, 'cito' has many downstream functionalities such as various explainable AI (xAI) metrics (e.g. variable importance, partial dependence plots, accumulated local effect plots, and effect estimates) to interpret trained DNNs. 'cito' optionally provides confidence intervals (and p-values) for all xAI metrics and predictions. At the same time, 'cito' is computationally efficient because it is based on the deep learning framework 'torch'. The 'torch' package is native to R, so no Python installation or other API is required for this package.
Last updated 1 months ago
machine-learningneural-network
9.07 score 37 stars 1 packages 127 scripts 289 downloadssjSDM - Scalable Joint Species Distribution Modeling
A scalable and fast method for estimating joint Species Distribution Models (jSDMs) for big community data, including eDNA data. The package estimates a full (i.e. non-latent) jSDM with different response distributions (including the traditional multivariate probit model). The package allows to perform variation partitioning (VP) / ANOVA on the fitted models to separate the contribution of environmental, spatial, and biotic associations. In addition, the total R-squared can be further partitioned per species and site to reveal the internal metacommunity structure, see Leibold et al., <doi:10.1111/oik.08618>. The internal structure can then be regressed against environmental and spatial distinctiveness, richness, and traits to analyze metacommunity assembly processes. The package includes support for accounting for spatial autocorrelation and the option to fit responses using deep neural networks instead of a standard linear predictor. As described in Pichler & Hartig (2021) <doi:10.1111/2041-210X.13687>, scalability is achieved by using a Monte Carlo approximation of the joint likelihood implemented via 'PyTorch' and 'reticulate', which can be run on CPUs or GPUs.
Last updated 9 days ago
deep-learninggpu-accelerationmachine-learningspecies-distribution-modellingspecies-interactions
7.55 score 68 stars 69 scripts 257 downloads